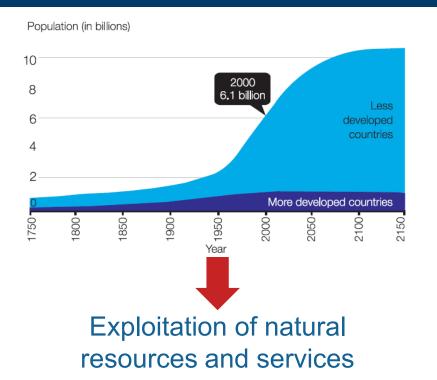


Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile



RawMaterials Hub Regional Center Southern Italy


EIT RawMaterials Winter School "Waste Electrical and Electronic Equipment" 26<sup>th</sup> - 30<sup>th</sup> October 2020

# Recovery of materials from End-of-Life PV Panels in a Life Cycle Assessment perspective

#### Napoli, 29<sup>th</sup> October 2020

Amalia Zucaro, Gabriella Fiorentino SSPT-USER-T4RM

### The economic system



- Increasing levels of pollution
- Resource depletion
- Species loss and ecosystem degradation



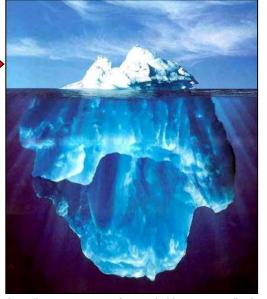


### The economic system



#### LINEAR ECONOMY

- Resource extraction
- Production of goods and / or services
- End of life






### 'Wasteberg'...what does it mean?

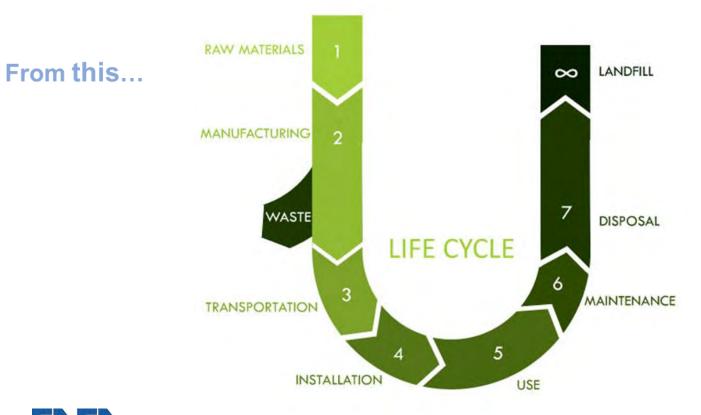
#### Municipal Waste

tip of the "wasteberg"



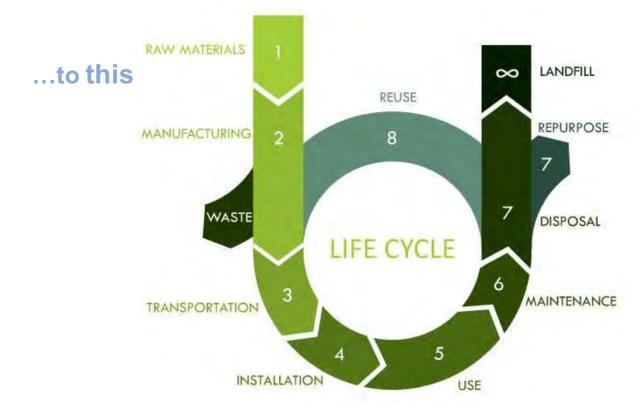
http://www.coopcentabc.org.br/documentos/inci neracao/Zero\_Waste\_San\_Francisco\_EUA.pdf




- Supply chain waste
- Airborne and waterborne emissions
- Wastewaters






EIT RawMaterials Winter School "Waste Electrical and Electronic Equipment" 26<sup>th</sup> - 30<sup>th</sup> October 2020

### The search for solutions



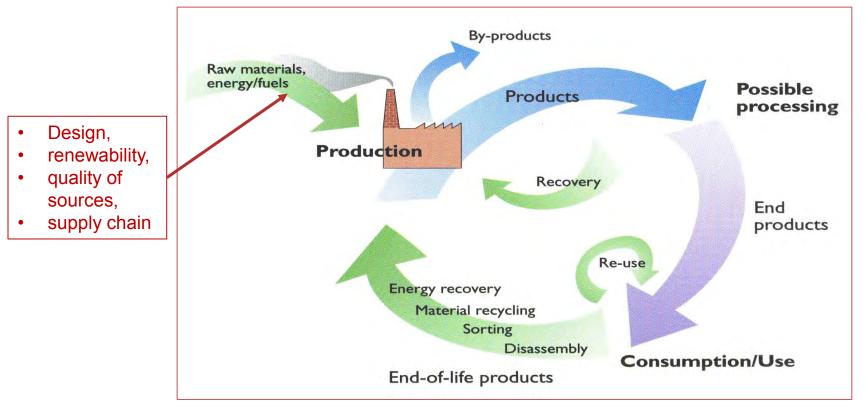


#### The search for solutions





### The search for solutions




#### THIS IS THE OUTCOME...

The circular economy package brings the pieces together – production, consumption, secondary raw materials, waste management, innovation & investment- to cover the whole product lifecycle



### Identify hotspots and alternatives in each process step





EIT RawMaterials Winter School "Waste Electrical and Electronic Equipment" 26th - 30th October 2020

# Circular economy monitoring framework

#### 1 EU self-sufficiency for raw materials

The share of a selection of key materials (including critical raw materials) used in the EU that are produced within the EU

#### 2 Green public procurement

The share of major public procurements in the EU that include environmental requirements

#### **3a-c** Waste generation

Generation of municipal waste per capita; total waste generation (excluding major mineral waste) per GDP unit and in relation to domestic material consumption

#### 4 Food waste

Amount of food waste generated

#### 7a-b Contribution of recycled materials to raw materials demand

Secondary raw materials' share of overall materials demand - for specific materials and for the whole economy

# 

#### 5a-b Overall recycling rates

Recycling rate of municipal waste and of all waste except major mineral waste

#### 6a-f Recycling rates for specific waste streams

Recycling rate of overall packaging waste, plastic packaging, wood packaging, waste electrical and electronic equipment, recycled biowaste per capita and recovery rate of construction and demolition waste

#### **9a-c** Private investments, jobs and gross value added

Private investments, number of persons employed and gross value added in the circular economy sectors

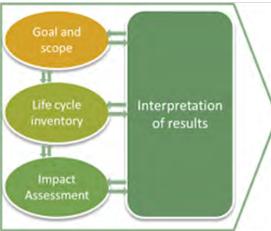
#### 10 Patents

Number of patents related to waste management and recycling

#### Source: COM(2018) 29 final

#### 8 Trade in recyclable raw materials

Imports and exports of selected recyclable raw materials




# LIFE CYCLE THINKING

#### ISO 14040/44:2006



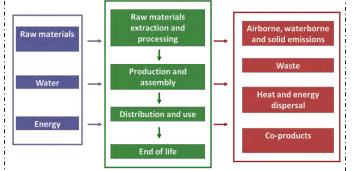
International Organization for Standardization



#### Life Cycle Assessment Framework






### LIFE CYCLE THINKING

#### **ENVIRONMENTAL SYSTEM**

#### DEFINED AS THE SOURCE OF INPUT MATERIALS AND ENERGY AS WELL AS THE SINK OF ALL EMISSIONS



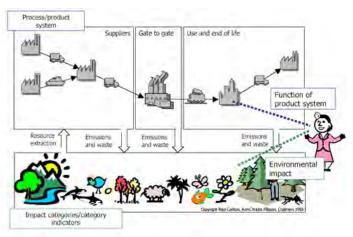
PRODUCT SYSTEM



DEFINED AS THE SET OF SUB-PROCESSES AND OPERATIVE STEPS HAVING THE FUNCTION OF GENERATING A USEFUL PRODUCT. IT IS SEPARATED FROM THE ENVIRONMENTAL SYSTEM BY WELL IDENTIFIED BOUNDARIES, BUT IT IS LINKED TO THE ENVIRONMENT THROUGH INPUT AND OUTPUT FLOWS.

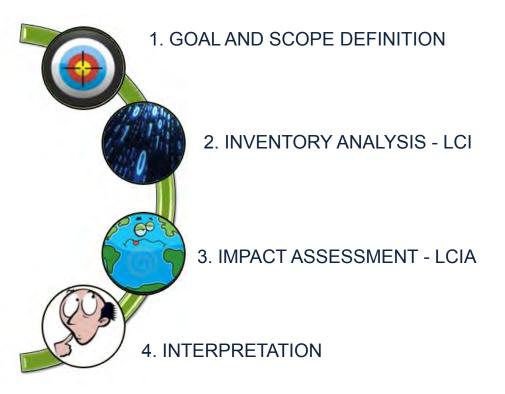


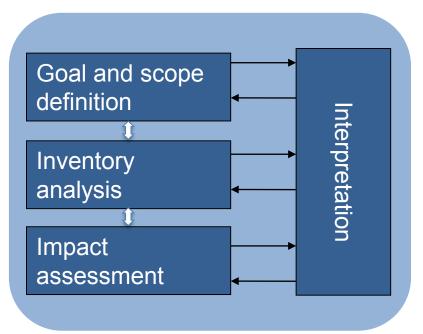
### LIFE CYCLE THINKING


IMPACTS CAN BE DEFINED AT DIFFERENT LEVELS AND EVALUATION POINTS:

- MID POINT: BIOPHYSICAL EFFECTS

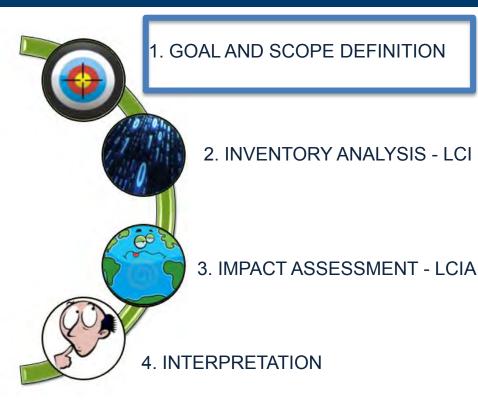
(acidification, eutrophication, etc);


- END POINT: DAMAGE EFFECTS
- (biodiversity loss, health damage, etc).


In each impact category, impacts are quantified through indicators.






# LIFE CYCLE ASSESSMENT (LCA)







# LIFE CYCLE ASSESSMENT (LCA)



#### **Goal and Scope definition**

It is important to establish what purpose the model is to serve, what one wishes to study, what depth and degree of accuracy are required

#### **Functional Unit**

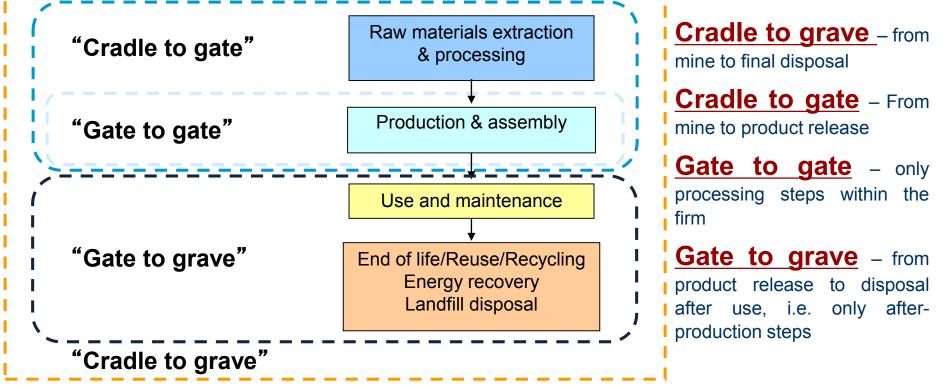
The functional unit defines the service that needs to be delivered

**Boundaries** Physical, geographical, temporal



# **FUNCTIONAL UNIT**

<u>The functional unit</u> measures the unit <u>functions provided</u> by the outputs in the investigated "product system" (i.e. represents what will be compared). It is based on the function, not on the product (careful consideration of a product/service life time is needed).


The function depends on the objective the systems and subsystems were designed for.

The REFERENCE FLOW must be defined for each elementary process.

#### To be used in the INVENTORY (e.g. mass of inputs, volumes of gases, etc)

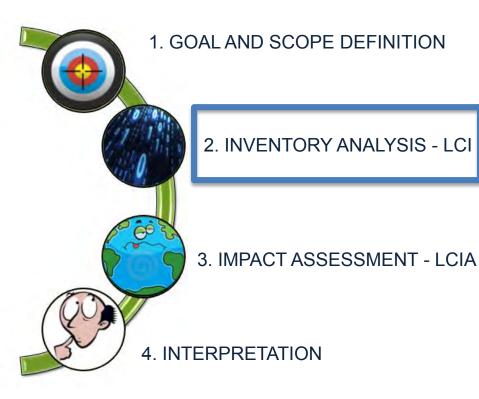


### **PHYSICAL BOUNDARIES**





#### Allocation


The allocation procedure must reflect a physical relation between flows and functions, in order to charge the impacts fairly and appropriately.

When data refer to a process characterized by two or more products, then we must decide which fraction of each input or output flow must be assigned to each output product or service (e.g. electricity and heat from a power plant).

This procedure is named ALLOCATION. The allocation should be avoided whenever this is possible. However, input flows and emissions can be partitioned to the products according to their mass, energy, exergy content, or economic value.



# LIFE CYCLE ASSESSMENT (LCA)



#### PRIMARY DATA

data directly collected on field by the investigator, with and without the collaboration of process operators

#### **SECONDARY DATA**

data representative of the process/sector dynamics, collected from literature or databases



### DATA COLLECTION

| PRIMARY DATA data directly collected on field<br>by the investigator, with and without the<br>collaboration of process operators. |                                  | SECONDARY DATA data representative of the process/sector dynamics, collected from literature or databases |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                   | DATA SOURCE                      | IMPORTANT FEATURES                                                                                        |  |  |  |  |
|                                                                                                                                   | REAL PROCESSES                   | Questionnaires, reports, manuals, agreements, comunication tools                                          |  |  |  |  |
|                                                                                                                                   | MODELS, ESTIMATES                | Process models, extrapolation procedures, similarities with other models, assumptions, ecc                |  |  |  |  |
|                                                                                                                                   | DATABASES, LITERATURE            | Transparent structure, price of data sources, copyright, applicability                                    |  |  |  |  |
|                                                                                                                                   | RESTRICTED DATABASES AND SOURCES | Confidentiality agreements, possibility to publish.                                                       |  |  |  |  |



# LIFE CYCLE ASSESSMENT (LCA)







- SimaPro software
- Produced by PRé Consultants
- Integrates with vaious databases,
- Uses a more text/menu approach to modelling, rather than graphical approach
  - $\circ \textsc{Though}$  graphical flowcharts can be viewed following data input
- Calculates results using matrix inversion
- For use by professionals at two levels (Analyst or Developer)
- Server based, convenient for multiple users and for remote connection





### SimaPro - Databases



Agri-footprint

ecoinvent (included by default, optional on request)

ESU world food LCA database (optional)

IDEA Japanese Inventory database (optional)

Swiss Input/Output database

AGRIBALYSE (optional)

ELCD

European and Danish Input/Output database

Industry data library: PlasticsEurope, ERASM, World Steel

US Life Cycle Inventory database

DATASMART LCI package (optional)

Environmental Footprint database (optional)

EXIOBASE (optional)

Social hotspots database (optional)

WEEE LCI database (optional)



### **SimaPro - Methods**

S

# SimaPro includes various methods

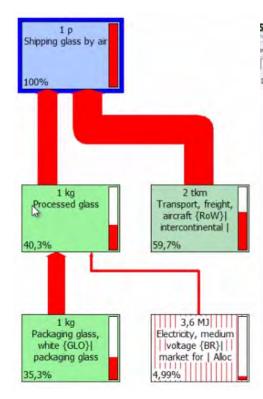
| AWARE                                     | BEES+                                | Berger et al 2014 (Water Scarcity)  |
|-------------------------------------------|--------------------------------------|-------------------------------------|
| Boulay et al 2011 (Human Health)          | Boulay et al 2011 (Water Scarcity)   | <u>CML-IA</u>                       |
| Cumulative Energy Demand (CED)            | Cumulative Energy Demand (LHV)       | Cumulative Exergy Demand            |
| Ecological Scarcity 2006 (Water Scarcity) | Ecological scarcity 2013             | Ecosystem Damage Potential          |
| EDIP 2003                                 | EF Method (adapted)                  | Environmental Footprint (EF)        |
| Environmental Prices                      | EPD 2018                             | EPS 2015d/ dx                       |
| Greenhouse Gas Protocol                   | Hoekstra et al 2012 (Water Scarcity) | ILCD 2011 Midpoint+                 |
| MPACT 2002+                               | IPCC 2013                            | Motoshita et al 2010 (Human Health) |
| Pfister et al 2009 (Eco-indicator 99)     | Pfister et al 2009 (Water Scarcity)  | Pfister et al 2010 (ReCiPe)         |
| ReCiPe 2016 Endpoint                      | ReCiPe 2016 Midpoint                 | Selected LCI results                |
| TRACI 2.1                                 | USEtox 2                             |                                     |

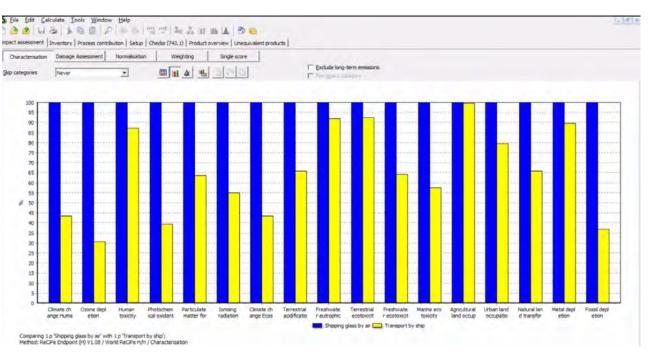


### **SimaPro - Inputs**

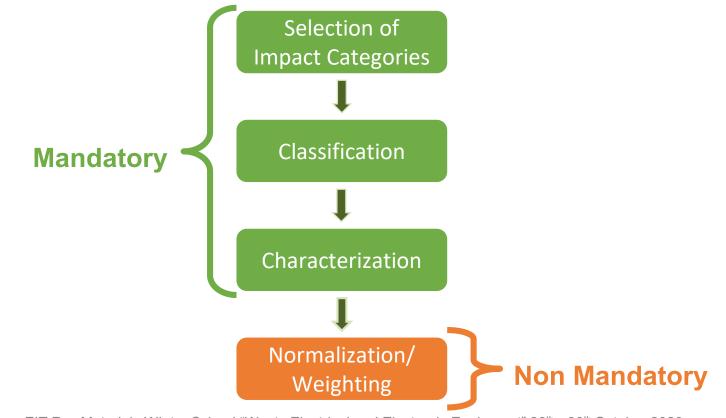
S Eile Edit Calculate Tools Window Help

#### 

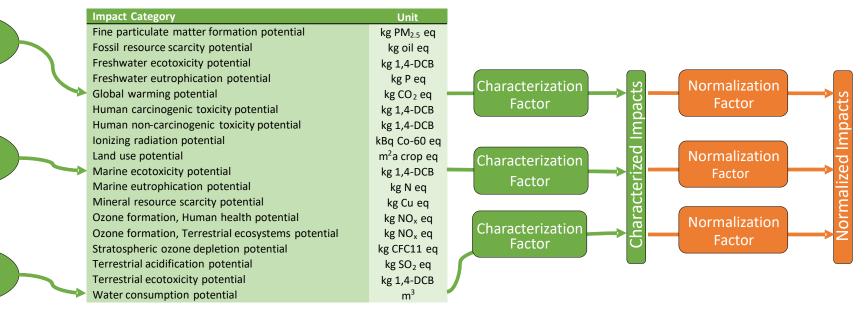

Documentation Input/output Parameters System description


|                                                   | S                                       | Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a product         |             |                         | *            |
|---------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|-------------------------|--------------|
| nown outputs to technosphere. Products and co-p   | E-Processes                             | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Unit              | Waste type  | Project A               |              |
| ame                                               | Material                                | Electricity, medium voltage {ASCC}  market for   Alloc De                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f, U kWh          |             | Ecoinvent 3 - alloca    | Select       |
| rocessed glass                                    | E Energy                                | Electricity, medium voltage (AT)   market for   Alloc Def,                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U kWh             |             | Ecoinvent 3 - alloca    |              |
| (Insert line he                                   | . Biomass                               | Electricity, medium voltage (AU)   market for   Alloc Def,                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U kWh             |             | Ecoinvent 3 - alloca    | New          |
| nown outputs to technosphere. Avoided products    | Cogeneration                            | Electricity, medium voltage (BA)   market for   Alloc Def,                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U kWh             |             | Ecoinvent 3 - alloca    |              |
| ame                                               | <ul> <li>Electricity by fuel</li> </ul> | Electricity, medium voltage (BE)   market for   Alloc Def, I                                                                                                                                                                                                                                                                                                                                                                                                                                                    | J kWh             |             | Ecoinvent 3 - alloca    | View         |
| (Insert line he                                   | E Electricity country mix               | Electricity, medium voltage {BG}  market for   Alloc Def,                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |             | Ecoinvent 3 - alloca    | Find         |
|                                                   | High Voltage + imp                      | Electricity, medium voltage (DR)   in set for   Alloc Def,                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |             | All and a second second |              |
|                                                   | 11 Low Voltage                          | Electricity, medium voltage {CA-AB} Tharket for   Alloc D                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |             | Ecoinvent 3 - alloca    | Cancel       |
| nown inputs from nature (resources)               | Low Voltage + imp                       | Electricity, medium voltage {CA-BC}   market for   Alloc Def, U                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ef, Ll kWh        |             | Ecoinvent 3 - alloca    |              |
| ame<br>(Insert line here)                         | Medium Voltage                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |             | and the second second   | Show as list |
|                                                   | - Market                                | Electricity, medium voltage [CA-NB] market for   Alloc D                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             | Econvent 3 - allocz     |              |
| nown inputs from technosphere (materials/fuels)   |                                         | Electricity, medium voltage {CA-NF}   market for   Alloc D                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | Ecoinvent : | Econvent 3 - allocz     |              |
| ame                                               |                                         | Electricity, medium voltage (CA-NS)   market for   Alloc D                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |             | Econvent 3 - alloca     |              |
| ackaging glass, white {GLO}  packaging glass proc | Production                              | Electricity, medium voltage (CA-NT)   market for   Alloc D                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |             | Ecoinvent 3 - alloca    |              |
| (Insert line he                                   | Production + impo                       | Electricity, medium voltage {CA-NU} market for   Alloc D                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             | Ecoinvent 3 - alloca    |              |
| nown inputs from technosphere (electricity/heat)  | (1) Mechanical                          | Electricity, medium voltage {CA-ON} market for   Alloc D                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             | Ecoinvent 3 - alloca    |              |
| ame                                               |                                         | Electricity, medium voltage (CA-PE)   market for   Alloc D                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ef, U kWh         |             | Ecoinvent 3 - alloca ¥  |              |
|                                                   | Others                                  | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |             | >                       |              |
| (Insert line he                                   | Transport     Processing     Use        | This dataset describes the electricity available on the medium voltage level in {{location}}. This is done by showing the transmission of 1k/Wh electricity at medium voltage. Production volume: 4050000000 k/Wh Included activities start: This activity starts from 1k/Wh of electricity fed into the medium voltage transmission network. Included activities and: This activity ends with the transport of 1 k/Wh of medium voltage electricity in the transmission network over ear-all lines and cables. |                   |             |                         |              |
| missions to air<br>ame<br>(Insert line here)      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |             |                         |              |
| missions to water                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |             |                         |              |
| ame                                               |                                         | This dataset includes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |             |                         |              |
| (Insert line here)                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |             | 1                       |              |
| issions to soil                                   | < >                                     | Filter on Filter on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r                 | Clear       | 74                      |              |
| me                                                | 10168 items                             | 1 item selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |             |                         |              |
| e (Insert line here)                              | 10100 10110                             | 1 + nem selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |                         |              |
|                                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |             |                         |              |
| I waste flows                                     | <b>C</b> 4                              | at Annual 1945 Participation Char                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |             |                         |              |
| ne                                                | Sub-compartme                           | nt Amount Unit Distribution SD^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 or 2*SD Min Max | Comment     |                         |              |
| (Insert line here)                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |             |                         |              |




24

### **SimaPro - Outputs**





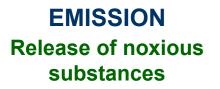





#### **Recipe Midpoint H Impact Method**

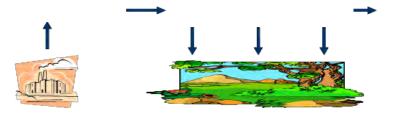




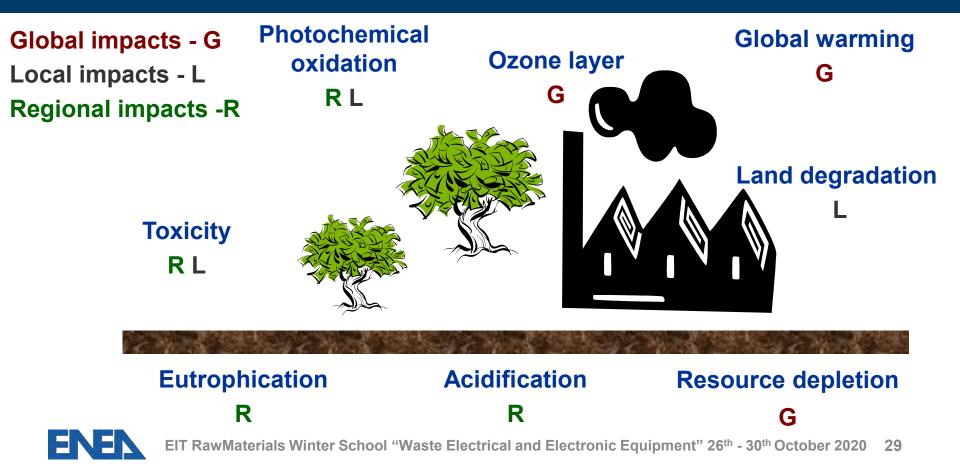

**Emission 1** 

**Emission 2** 

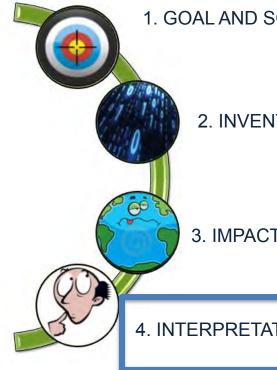
Depletion 1




THREE (3) MAIN FACTORS




#### TRANSMISSION


Substances undergo physico-chemical changes after being released to the environment IMMISSION Concentration or deposition of pollutants in their final destination site







# LIFE CYCLE ASSESSMENT (LCA)



#### 1. GOAL AND SCOPE DEFINITION

2. INVENTORY ANALYSIS - I CL

3. IMPACT ASSESSMENT - LCIA

#### 4. INTERPRETATION

#### INTERPRETATION

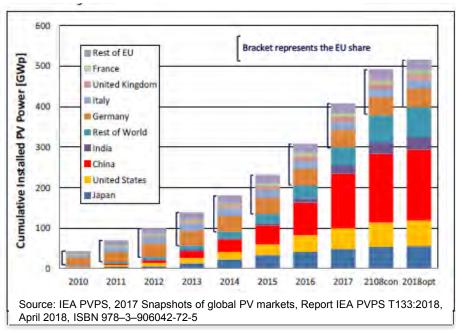
Once the system has been analysed, this step aims at verifying if results are consistent with the goal and scope and if the procedure fits the ISO standards. Then improvements are suggested to minimize the environmental load.



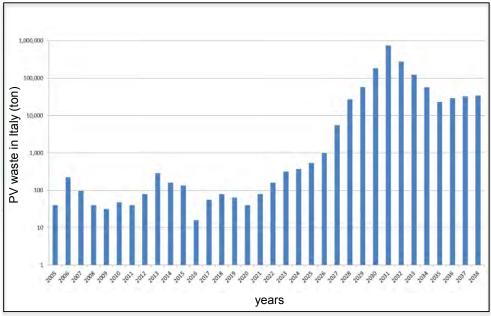
### **Case study – the ReSiELP project**



Supported by



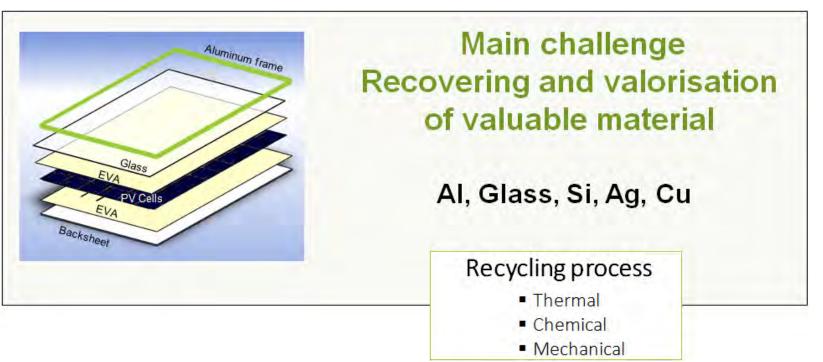

#### Recovery of Silicon and other materials from End-of-Life Photovoltaic Panels





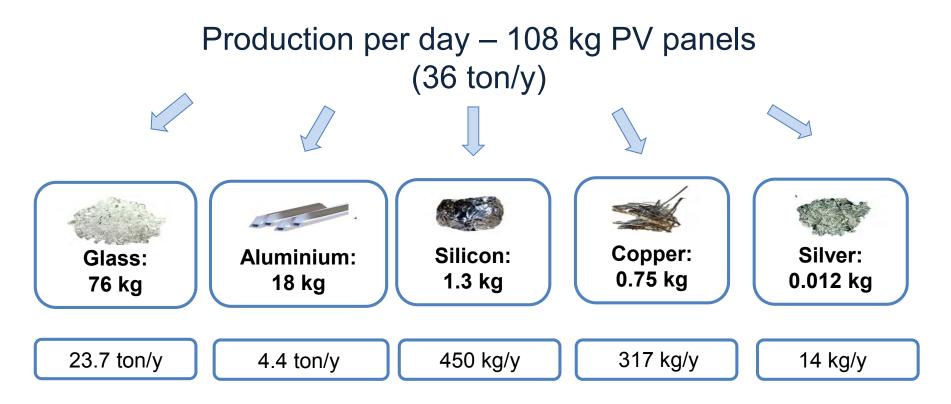

### **General context**




PV panels lifetime: ~ 25-30 years Cumulative EoL PV panels waste should exceed 60 million tonnes by 2050



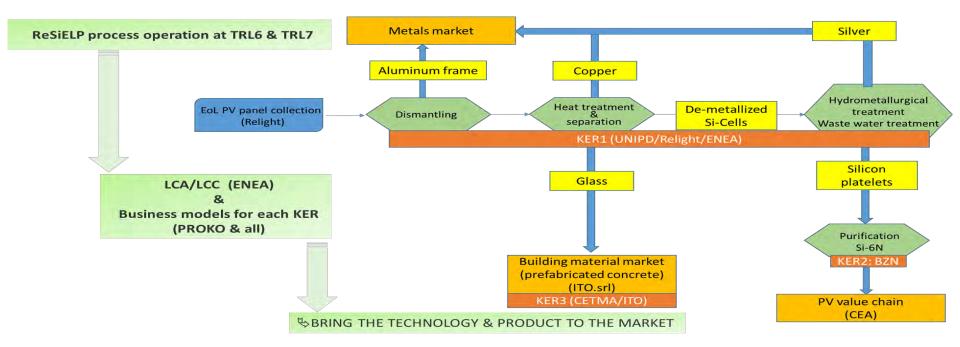



# **EoL PV panels management: opportunity and challenge**

#### VALUE CREATION & IMPLEMENTATION OF A CIRCULAR VALUE-CHAIN






# **EoL PV panels management: opportunity and challenge**





### **ReSiELP value chain**

#### Recovery and valorization of materials (Si, Ag, Al, Cu and glass)



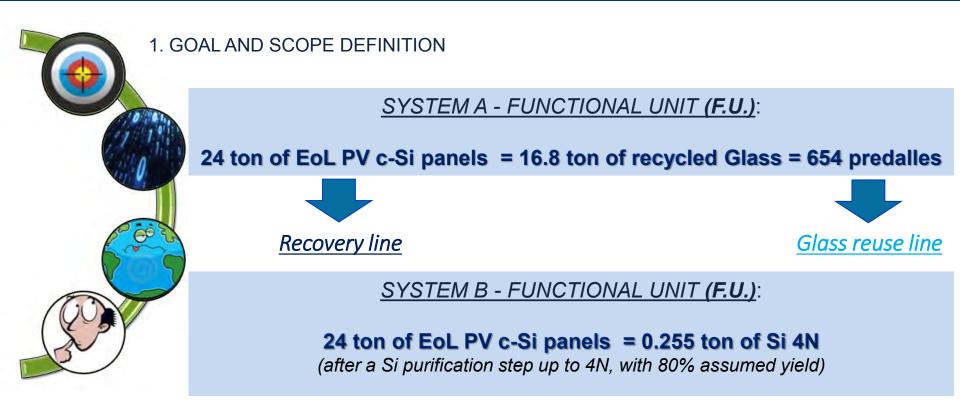


# LCA of ReSiELP recovery process

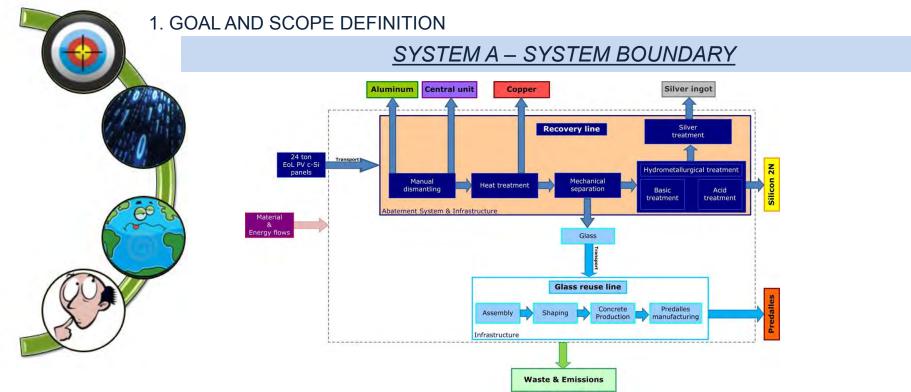
#### 1. GOAL AND SCOPE DEFINITION

The objectives of this LCA study are:

- identifying environmental hotspots and opportunities to improve the environmental performances (e.g. by reducing environmental loads) of the following processes:
  - from dismantling up to hydrometallurgical treatments, carried out at Relight plant – Recovery line (Northern Italy)
  - use of the recovered glass as inert in the concrete prefabricated building elements (predalles), implemented at ITO plant – Glass reuse line (Southern Italy)
  - silicon purification process, carried out at Bay Zoltan plant Si purification line (Hungary)
- giving a general overview on the environmental performances of the developed recovery process.

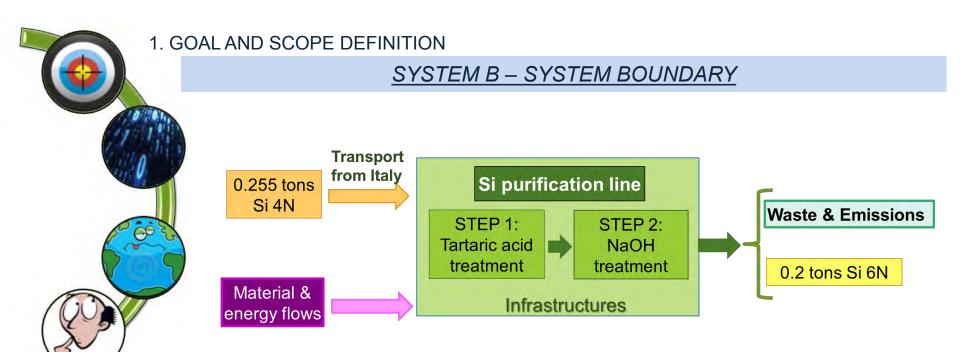



#### 1. GOAL AND SCOPE DEFINITION


The systems under study are two:

- A. System A, including two different lines: 1) the Recovery line and 2) the Glass reuse line. The function of this system consists in recovering/extracting aluminium, glass, copper, silver and silicon (2N purity grade) from EoL PV c-Si modules and in reusing the recovered glass in the Building & Construction sector;
- B. System B, related to the purification of silicon, from 4N to 6N purity grade. The function of this system consists in purifying silicon, so that it can be reused for the production of new PV panels.



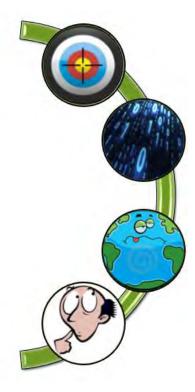









39





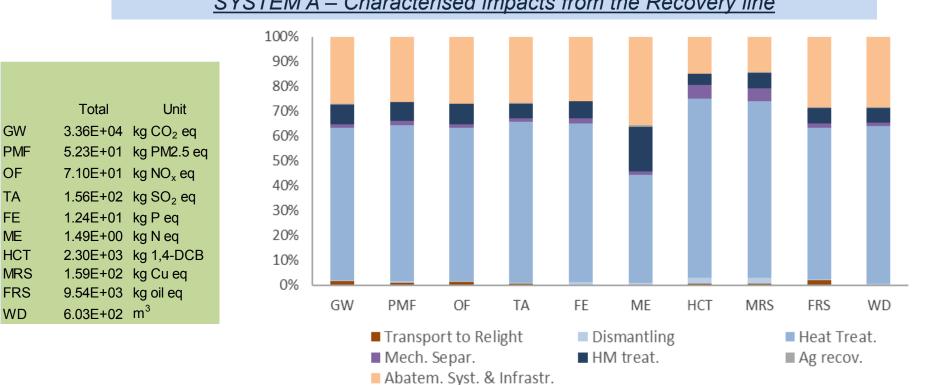



- Primary data from direct surveys
- Secondary data from literature (scientific papers and databases)
- Tertiary data from estimates and similar operations, environmental statistics and average values.





#### ReCiPe H Midpoint method


(Huijbregts *et al.,* 2016. ReCiPe 2016 A harmonized life cycle impact assessment method at midpoint and endpoint level. Report I: Characterization. RIVM Report 2016-0104. National Institute for Public Health and the Environment)

#### 3. IMPACT ASSESSMENT - LCIA

Which environmental impact categories were considered?

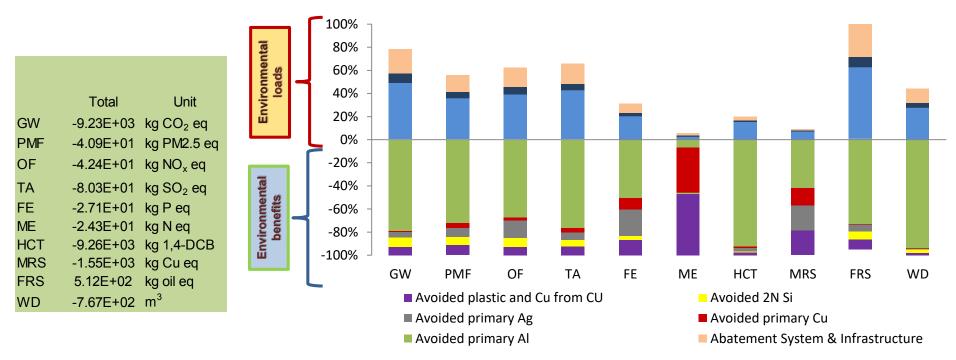
global warming (GW), fine particulate matter formation (PMF), ozone formation, terrestrial ecosystems (OF), terrestrial acidification (TA), freshwater eutrophication (FE), marine eutrophication (ME), human carcinogenic toxicity (HCT), mineral resource scarcity (MRS), fossil resource scarcity (FRS) and water consumption (WD)



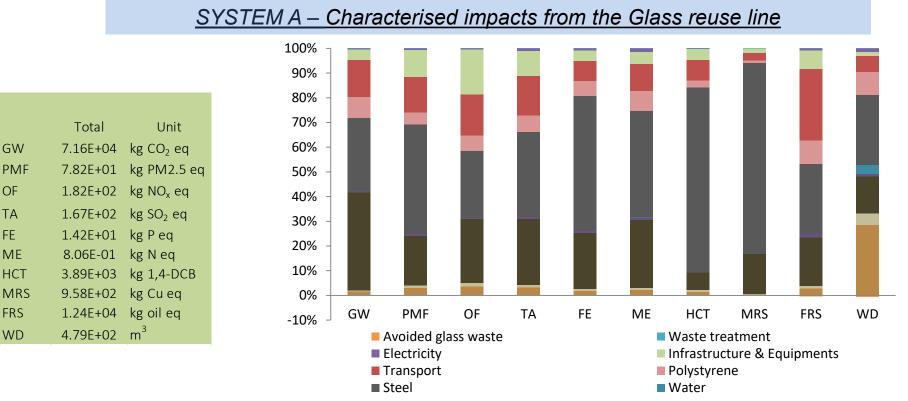


#### SYSTEM A – Characterised impacts from the Recovery line



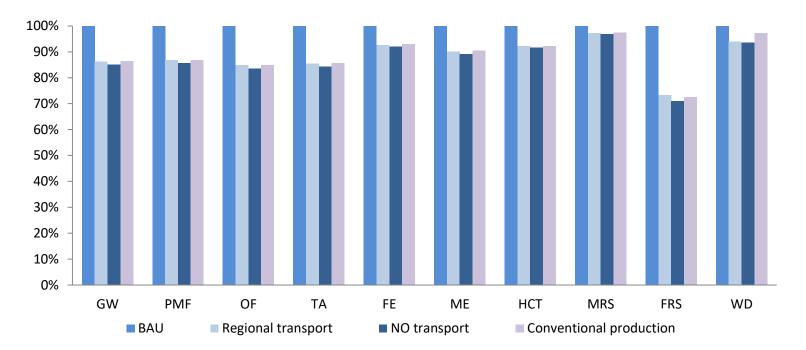

OF

TA


FE

ME

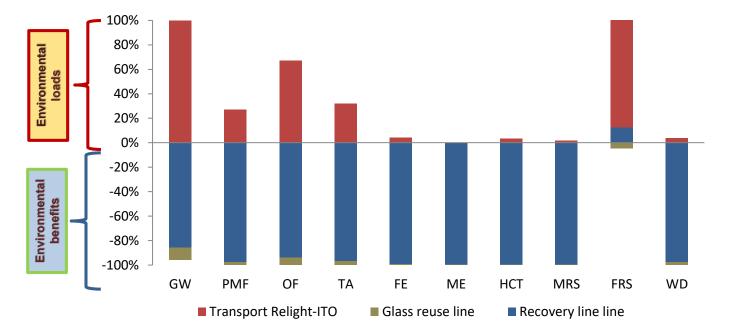
#### <u>SYSTEM A – Characterised NET impacts from the Recovery line</u>







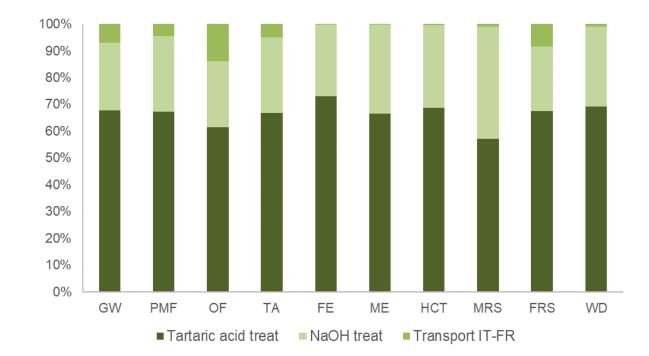




#### <u>SYSTEM A – Transport scenarios in the Glass reuse line</u>

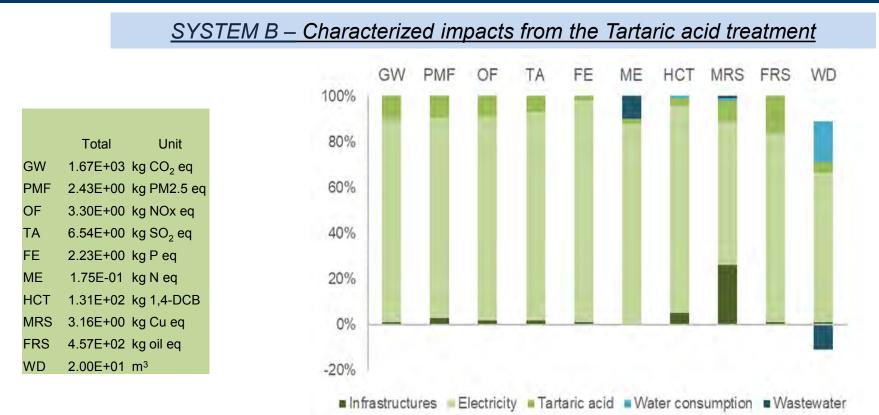




#### <u>SYSTEM A – Characterised NET impacts from the System A</u>

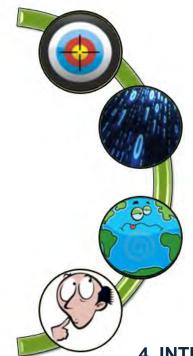

Total Unit GW 4.66E+02 kg CO<sub>2</sub> eq PMF -3.06E+01 kg PM2.5 eq OF -1.48E+01 kg NO<sub>x</sub> eq TA -5.64E+01 kg SO<sub>2</sub> eq FE -2.61E+01 kg P eq ME -2.42E+01 kg N eq HCT -8.95E+03 kg 1,4-DCB MRS -1.52E+03 kg Cu eq FRS 3.92E+03 kg oil eq -7.53E+02 m<sup>3</sup> WD






#### SYSTEM B - Characterized impacts from the Si purification

Total Unit 2.47E+03 kg CO<sub>2</sub> eq GW 3.61E+00 kg PM2.5 eq PMF 5.37E+00 kg NOx eq OF 9.79E+00 kg SO<sub>2</sub> eq TA 3.06E+00 kg P eq FE 2.62E-01 kg N eq ME 1.91E+02 kg 1,4-DCB HCT 5.54E+00 kg Cu eq MRS 6.77E+02 kg oil eq FRS 2.89E+01 m<sup>3</sup> WD










# LCA analysis: Conclusions



**The LCA analysis** shows that, overall, the process developed within the ReSiELP project is <u>advantageous from an environmental point of view</u>, thanks to the recovery of secondary materials. Moreover, the ReSiELP process results <u>quite competitive in comparison with other recycling</u> <u>processes</u> (especially, with the low value ones).

**System A**: the main **benefits** derive from the recovery of <u>AI and Cu</u>. In the Recovery line, the greatest **burden** is the <u>electricity</u> consumption while <u>steel</u> <u>and cement</u> productions are the main hotspots for the Glass reuse line; moreover, the scenario analysis showed the relevance of <u>transportation</u> on the environmental impact.

**System B**: the Tartaric acid treatment is more impacting than the NaOH treatment, due to its considerable <u>energy consumption</u>.

#### 4. INTERPRETATION



# Environmental Life Cycle Costing (eLCC) analysis

Life Cycle Costing (LCC) is applied as an assessment tool to **estimate the entire cost of the system under investigation**, during its whole life cycle.

In this study the Environmental LCC (eLCC) was performed. It includes:

(i) the **sum of all funds expended** in support of an item from its conception and fabrication through its operation and the end of its useful life (**internal costs**);

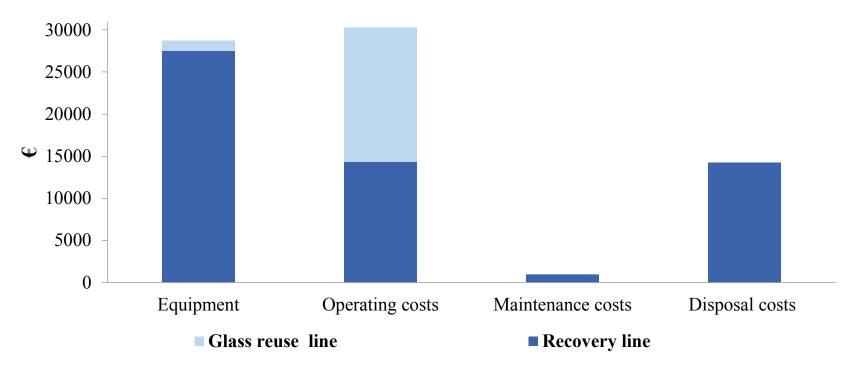
(ii) the **external costs** of environmental impacts (also known as externalities or environmental costs).

This eLCC analysis was conducted from the **perspective** of an entrepreneur. The **boundaries, functional units** (FUs) and **assumptions** for the studied systems (A and B) were the same as in the LCA study.

Data sources : primary and secondary data were used.

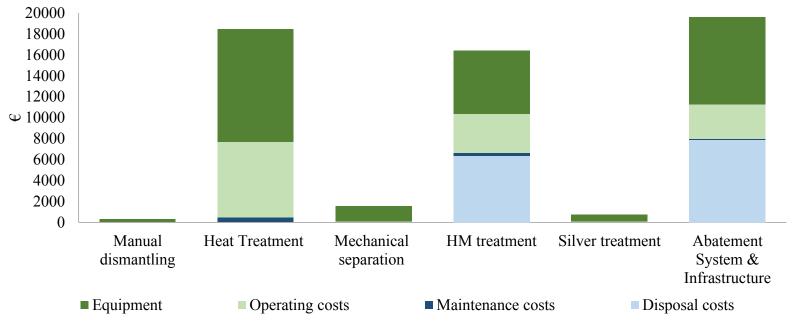


# Environmental Life Cycle Costing (eLCC) analysis


The Environmental Priority Strategies (EPS) approach (version 2015dx) was applied for the calculation of the externalities.

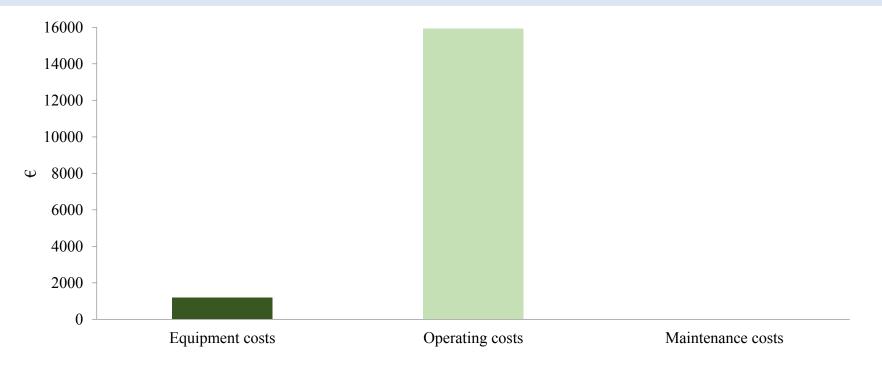
| Safeguard subject/<br>Area of protection | Abbrev. |
|------------------------------------------|---------|
| Abiotic Resources                        | AR      |
| Access to Water                          | AW      |
| Bio-Diversity                            | BD      |
| Ecosystem Services                       | ES      |
| Human Health                             | НН      |

The **results** of the EPS impact assessment method are **monetary values** (monetarization) of environmental impacts from emissions and use of resources. They are indicated as damage costs and are expressed as <u>ELU (Environmental Load Units)</u>. **One ELU** represents an externality corresponding to **1 Euro** environmental damage cost.




#### eLCC – System A (Recovery & Glass reuse lines): Internal costs





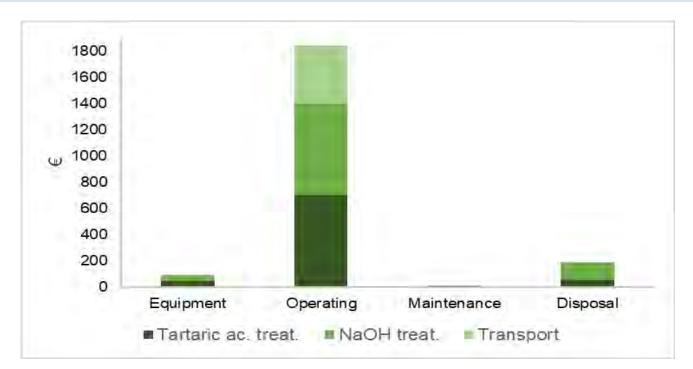

#### eLCC – Recovery line: Internal costs





#### eLCC – Glass reuse line: Internal costs






#### eLCC - System A (Recovery & Glass reuse lines): Externalities

| Safe guard subject | Unit* | Total     | Recovery line | Glass reuse line | Transport<br>Relight ITO |
|--------------------|-------|-----------|---------------|------------------|--------------------------|
| Ecosystem services | ELU   | -2.02E+00 | -4.06E+01     | -4.26E+00        | 4.28E+01                 |
| Access to water    | ELU   | 4.33E-01  | -1.87E+00     | -2.58E-01        | 2.56E+00                 |
| Biodiversity       | ELU   | 2.60E-02  | -9.96E-02     | -1.39E-02        | 1.40E-01                 |
| Human health       | ELU   | -1.23E+03 | -2.92E+03     | -1.69E+02        | 1.86E+03                 |
| Abiotic resources  | ELU   | -1.18E+05 | -1.29E+05     | -5.90E+02        | 1.12E+04                 |
| TOTAL              | ELU   | -1.19E+05 | -1.32E+05     | -7.64E+02        | 1.31E+04                 |




#### eLCC - System B: Internal costs





#### eLCC - System B: Internal costs



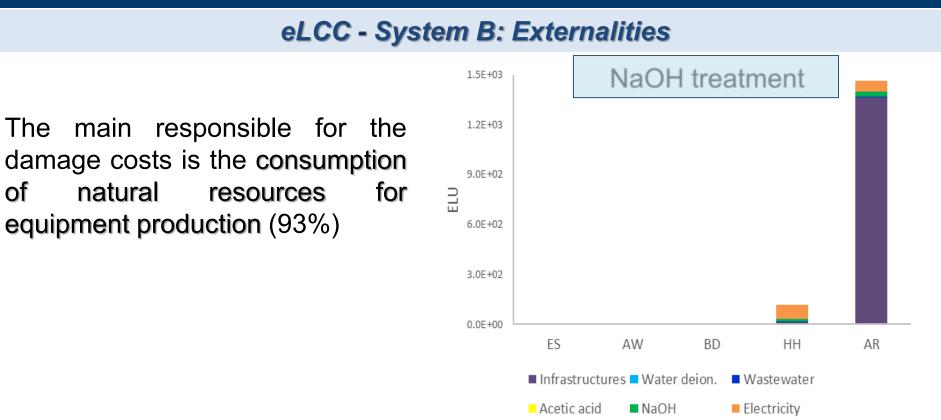


58

900

600

300


0

### eLCC - System B: Externalities

1800 The highest costs (80.5%) 1500 the total) were of recorded for Abiotic 1200 Resources, followed  $\supseteq$ (19.0%) by those for Human Health.

| Safe guard subject | Unit | Total       | Tartaric acid<br>treatment | NaOH<br>treatment      | Trai |
|--------------------|------|-------------|----------------------------|------------------------|------|
| Ecosystem services | ELU  | 9.52E+00    | 6.45E+00                   | 2.35E+00               | 7    |
| Access to water    | ELU  | 5.81E-01    | 3.94E-01                   | 1.45E-01               | 4    |
| Biodiversity       | ELU  | 3.19E-02    | 2.14E-02                   | 8.18E-03               |      |
| Human health       | ELU  | 4.26E+02    | 2.86E+02                   | 1.1 <mark>6E+02</mark> | 2    |
| Abiotic resources  | ELU  | 1.80E+03    | 3.07E+02                   | 1.46E+03               | 2    |
|                    |      |             |                            |                        |      |
|                    |      |             |                            |                        |      |
|                    |      |             |                            |                        |      |
| ES AV              | N    | BD          | HH                         | AR                     |      |
| rtaric acid treat  | NaOł | ltreat ∎Tra | nsport Italy-Fra           | nce                    |      |







#### eLCC: Internal costs

- In System A, the operating phase is the most expensive, followed by the equipment costs. Recovery and Glass reuse lines contribute to an equivalent extent to the operating costs, while for all other cost categories, the main share is from the Recovery line.
- For System B, the hotspot for internal costs is the operating phase.

#### eLCC: Externalities

- Concerning the externalities, a net saving in environmental damage costs is observed thanks to the secondary materials recovery for System A.
- For System B, the highest damage costs are due to resource depletion for the production of the equipment used in the basic treatment.



## **Concluding Remarks**

- Untreated waste and polluting emissions generate huge impacts on human health and ecosystems.
- Waste is not only what we see, let's keep in mind the hidden waste flows, much bigger. Never forget the "wasteberg" !
- Needed investments for environmental care, landscape integrity, waste decrease and recycling, innovation towards new materials and technologies that pollute less and provide more jobs and wellbeing.





62



Amalia Zucaro <u>amalia.zucaro@enea.it</u> Gabriella Fiorentino <u>gabriella.fiorentino@enea.it</u>





EIT RawMaterials Winter School "Waste Electrical and Electronic Equipment" 26th - 30th October 2020